Pagina-afbeeldingen
PDF
ePub

modified form over the areas of more or signifying nothing; but the probability less vegetation. seems the other way. As to details of explanation, any we may adopt will undoubtedly be found, on closer acquaintance, to vary from the actual Martian state of things; for any Martian life must differ markedly from our own.

One of these specially fertile spots, situated upon the borderland betwixt the dark and the light regions, has a picturesque history. It lies at the head of the Margaritifer Sinus, or Pearl-Bearing Gulf, so named some years ago by Schiaparelli; the name having been given by him to the gulf quite fortuitously. But it turns out that the gulf was prophetically named, for there in it is this round spot which makes terminus to a short canal connecting it with the lower end of the western Sabæus Sinus, and probably also terminus to a long canal coming from the Chrysorrhoas, across both branches of the Ganges. Diving into the depths of space has thus brought up the pearl from the bottom of the gulf.

We thus perceive that the blue-green areas are subjected to the same engineering system as the bright ones. In short, no part of the planet is allowed to escape from the all-pervasive trigonometric spirit. If this be Nature's doing, she certainly runs her mathematics into the ground.

To review, now, the chain of reasoning by which we have been led to regard it probable that upon the surface of Mars we see the effects of local intelligence: we find, in the first place, that the broad physical conditions of the planet are not antagonistic to some form of life; secondly, that there is an apparent dearth of water upon the planet's surface, and therefore, if beings of sufficient intelligence inhabited it, they would have to resort to irrigation to support life; thirdly, that there turns out to be a network of markings covering the disc precisely counterparting what a system of irrigation would look like; and, lastly, that there is a set of spots placed where we should expect to find the lands thus artificially fertilized, and behaving as such constructed oases should. All this, of course, may be a set of coincidences,

The fundamental fact in the matter is the dearth of water. If we keep this in mind, we shall see that many of the objections that spontaneously arise answer themselves. The supposed Herculean task of constructing such canals disappears at once; for if the canals be dug for irrigation purposes, it is evident that what we see and call, by ellipsis, the canal is not really the canal at all, but the strip of fertilized land bordering it, the thread of water in the midst of it, the canal itself, being far too small to be perceptible. In the case of an irrigation canal seen at a distance, it is always the strip of verdure, not the canal, that is visible, as we see in looking from afar upon irrigated country on the earth.

Startling as the outcome of these observations may appear at first, in truth there is nothing startling about it whatever. Such possibility has been quite on the cards ever since the existence of Mars itself was recognized by the Chaldean shepherds, or whoever the still more primeval astronomers may have been. Its strangeness is a purely subjective phenomenon, arising from the instinctive reluctance of man to admit the possibility of peers. Such would be comic were it not the inevitable consequence of the constitution of the universe. To be shy of anything resembling himself is part and parcel of man's own individuality. Like the savage who fears nothing so much as a strange man, like Crusoe who grows pale at the sight of footprints not his own, the civilized thinker instinctively turns from the thought of mind other than the one he himself knows. To admit into his conception of the cosmos other finite minds as factors has in it something of the weird. Any hypothesis to explain the

facts, no matter how improbable or even palpably absurd it be, is better than this. Snowcaps of solid carbonic acid gas, a planet cracked in a positively monomaniacal manner, meteors ploughing tracks across its surface with such mathematical precision that they must have been educated to the performance, and so forth and so on, in hypotheses each more astounding than its predecessor, commend themselves to man, if only by such means he may escape the admission of anything approaching his kind. Surely all this is puerile, and should be outgrown as speedily as possible. It is simply an instinct like any other, the projection of the instinct of self-preservation. We ought, therefore, to rise above it, and, where probability points to other things, boldly accept the fact provisionally, as we should the presence of oxygen, or iron, or anything else. Let us not cheat ourselves with words. Conservatism sounds finely, and covers any amount of ignorance and fear. We must be just as careful not to run to the other extreme, and draw deductions of purely local outgrowth. To talk of Martian beings is not to mean Martian Just as the probabilities point to the one, so do they point away from the other. Even on this earth man is of the nature of an accident. He is the survival of by no means the highest physical organism. He is not even a high form of mammal. Mind has been his making. For aught we can see, some lizard or batrachian might just as well have popped into his place in the race, and been now the dominant creature of this earth. Under different physical circumstances he would have been certain to do so. Amid the physical surroundings that exist on Mars, we may be practically sure other organisms have been evolved which would strike us as exquisitely grotesque. What manner of beings they may be we have no data to conceive.

men.

How diverse, however, they doubtless are from us will appear from such definite deduction as we are able to make

from the physical differences between Mars and our earth. For example, the mere difference of gravity on the surface of the two planets is much more farreaching in its effects than might at first be thought. Gravity on the surface of Mars is only a little more than one third what it is on the surface of the earth. This would work in two ways to very different conditions of existence from those to which we are accustomed. To begin with, three times as much work, as for example in digging a canal, could be done by the same expenditure of muscular force. If we were transported to Mars, we should be pleasingly surprised to find all our manual labor suddenly lightened threefold. But, indirectly, there might result a yet greater gain to our capabilities; for if Nature chose, she could afford there to build her inhabitants on three times the scale she does on earth, without their ever finding it out except by interplanetary comparison.

one.

As we all know, a very large man is much more unwieldy than a very small An elephant refuses to hop like a flea; not because he considers it undignified to do so, but simply because he cannot take the step. If we could, we should all jump straight across the street, instead of painfully paddling through the mud. Our inability to do so depends partly on the size of the earth, and partly on the size of our own bodies, but not at all on what it at first seems entirely to depend on, the size of the street.

To see this, let us consider the very simplest case, that of standing erect. To this every-day feat opposes itself the weight of the body simply, a thing of three dimensions, height, breadth, and thickness, while the ability to accomplish it resides in the cross-section of the muscles of the knee, a thing of only two dimensions, breadth and thickness. Consequently, a person half as large again as another has about twice the supporting capacity of that other, but about three times as much to support. Standing

therefore tires him out more quickly. If his size were to go on increasing, he would at last reach a stature at which he would no longer be able to stand at all, but would have to lie down. You shall see the same effect in quite inanimate objects. Take two cylinders of paraffine wax, one made into an ordinary candle, the other into a gigantic facsimile of one, and then stand both upon their bases. To the small one nothing happens. The big one, however, begins to settle, the base actually made viscous by the pressure of the weight above.

Now apply this principle to a possible inhabitant of Mars, and suppose him to be constructed three times as large as a human being in every dimension. If he were on earth, he would weigh twentyseven times as much as the human being, but on the surface of Mars, since gravity there is only about one third of what it is here, he would weigh but nine times as much. The cross-section of his muscles would be nine times as great. Therefore the ratio of his supporting power to the weight he must support would be the same as ours. Consequently, he would be able to stand with no more fatigue than we experience. Now consider the work he might be able to do. His muscles, having length, breadth, and thickness, would all be twenty-seven times as effective as ours. He would prove twenty-seven times as strong as we, and could accomplish twenty-seven times as much. But he would further work upon what required, owing to decreased gravity, but one third the effort to overcome. His effective force, therefore, would be eightyone times as great as man's, whether in digging canals or in other bodily occupation. As gravity on the surface of Mars is really a little more than one third that at the surface of the earth, the true ratio is not eighty-one, but about fifty; that is, a Martian would be, physically, fifty-fold more efficient than a man.

As the reader will observe, there is nothing problematical about this deduc

[blocks in formation]

A planet may in a very real sense be said to have a life of its own, of which what we call life may or may not be a detail. It is born, has its fiery youth, its sober middle age, its palsied senility, and ends at last in cold incapability of further change, its death. The speed with which it runs through its gamut of change depends upon its size; for the larger the body, the longer it takes to cool, and with it loss of heat means loss of life. It takes longer to cool because, as we saw in a previous paper, it has relatively more inside than outside, and it is through its outside that its inside cools. Now, inasmuch as time and space are not, as some philosophers have from their too mundane standpoint supposed, forms of our intellect, but essential attributes of the universe, the time taken by any process affects the character of the process itself, as does also the size of the body undergoing it. The changes brought about in a large planet by its cooling are not, therefore, the same as those brought about in a small one. Physically, chemically, and, to our present end, organically, the two results are quite diverse. So different, indeed, are they that unless the planet have at least a certain size it will never produce what we call life, meaning our particular chain of changes or closely allied forms of it, at all. As we saw in the case of atmosphere, it will lack even the premise to such conclusion.

Whatever the particular planet's line of development, however, in its own line it proceeds to greater and greater degrees of evolution, till the process is arrested by the planet's death, as above

described. The point of development attained is, as regards its capabilities, precisely measured by the planet's own age, since the one is but a symptom of the other.

Now, in the special case of Mars, we have before us the spectacle of an old world, a world well on in years, a world much older relatively than the earth, halfway between it and the end we see so sadly typified by our moon, a body now practically past possibility of change. To so much about his age Mars bears evidence on his face. He shows unmistakable signs of being old. What we know would follow advancing planetary years is legible there. His continents are all smoothed down; his oceans have all dried up. If he ever had a jeunesse orageuse, it has long since been forgotten. Although called after the most turbulent of the gods, he is, and probably always has been, one of the most peaceful of the heavenly bodies. His name is a sad misnomer; indeed, the ancients seem to have been singularly unfortunate in their choice of planetary cognomens. With Mars so peaceful, Jupiter so young, and Venus bashfully dropped in cloud, the planets' names accord but ill with their temperaments.

Mars being thus old himself, we know that evolution on his surface must be similarly advanced. This only informs us of its condition relative to the planet's capabilities. Of its actual state our data are not definite enough to furnish much deduction. But from the fact that our own development has been comparatively a recent thing, and that a long time would be needed to bring even Mars to his present geological condition, we may judge any life he may support to be not only relatively, but really, more advanced than our own.

From the little we can see, such appears to be the case. The evidence of handicraft, if such it be, points to a highly intelligent mind behind it. Irrigation, unscientifically conducted, would

[blocks in formation]

events, have had no part in them; for the system is planet wide. Quite possibly, such Martian folk are possessed of inventions of which we have not dreamed, and with them electrophones and kinetoscopes are things of a bygone past, preserved with veneration in museums as relics of the clumsy contrivances of the simple childhood of their kind. Certainly, what we see hints at the existence of beings who are in advance of, not behind us, in the race of life.

For answers to such problems we must look to the future. That Mars seems to be inhabited is not the last, but the first word on the subject. More important than the mere fact of the existence of living beings there is the question of what they may be like. Whether we ourselves shall live to learn this cannot, of course, be foretold. One thing, however, we can do, and that speedily: look at things from a standpoint raised above our local point of view; free our minds at least from the shackles that of necessity tether our bodies; recognize the possibility of others in the same light that we do the certainty of ourselves. That we are the sum and substance of the capabilities of the cosmos is something so prepos terous as to be exquisitely comic. We pride ourselves upon being men of the world, forgetting that this is but objectionable singularity, unless we are in some wise men of more worlds than one. For after all, we are but a link in a chain. Man is merely this earth's highest production up to date. That he in any sense gauges the possibilities of the universe is humorous. He does not, as we can easily foresee, even gauge those

of this planet. He has been steadily bettering from an immemorial past, and will apparently continue to improve through an incalculable future. Still less does he gauge the universe about him. He merely typifies in an imperfect way what is going on elsewhere, and what, to a mathematical certainty, is in some corners of the cosmos indefinitely excelled.

If astronomy teaches anything, it teaches that man is but a detail in the evolution of the universe, and that resemblant though diverse details are inevitably to be expected in the host of orbs around him. He learns that though he will probably never find his double anywhere, he is destined to discover any number of cousins scattered through space.

Percival Lowell.

PRESIDENT POLK'S DIARY.

In the Lenox Library of New York city may be seen the literary relics of the late George Bancroft, which that institution purchased in 1893 from the executors of his estate, after Congress had delayed action upon their offer of the whole undivided collection to the United States government at an appraised value of $75,000, under a provision of the historian's will. The price paid privately was nearly ten thousand dollars more than that asked from the public; the entire collection numbering, in books, pamphlets, and manuscripts, about twenty thousand volumes.

Among the richest treasures of this collection, as well as its latest important accession during Mr. Bancroft's life, should be reckoned the private papers and correspondence of President James K. Polk; or rather, we should say, typewritten copies of the original manuscripts, which were prepared under the venerable author's immediate supervision, and bound up, after careful verification, in handsome volumes of half turkey morocco with gilt-letter titles. Mr. Bancroft, as the last survivor of a Cabinet and an administration whose policy was in many respects profound and far-reaching, suddenly conceived, at the age of eighty-six, the purpose of making an authentic and complete narrative of that political term;

and accordingly, after writing to Nashville in April, 1887, he visited Mr. Polk's widow, and obtained full permission to take to his own home the mass of papers which had remained undisturbed as the ex-President left them at his death, nearly forty years earlier, and to make such use of them as he might deem fit. The scholar pursued his task with ardor, so far as to prepare and arrange the desired materials, a labor most congenial and easy to one of his long experience; he felt the first glow of this new literary undertaking, which was sure to bring hidden testimony to light. But his remarkable intellect and trained habits of industry were not equal, at so late an age, to the creative task of composition; his health declined, and on the 17th of January, 1891, he died. This final service of our historical sage in the interest of American past politics was a distinct and valuable one, but it was that of compiler, rather than of historian. He has, however, left on record the impressions made on his own mind by the perusal of the manuscript. "Polk's character shines out in these papers," he writes, "just exactly as the man was, prudent, far-sighted, bold, exceeding any Democrat of his day in his undeviatingly correct exposition of Democratic principles."

« VorigeDoorgaan »