Pagina-afbeeldingen
PDF
ePub

of blood, passes through the heart fourteen tines in one hour; which is about once every four minutes." Consider what an affair this is when we come to very large animals. The aorta of a whale is larger in the bore than the main pipe of the water-works at London-Bridge; and the water roaring in its passage through that pipe is inferior, in impetus and velocity, to the blood gushing from the whale's heart. Hear Dr. Hunter's account of the dissection of a whale:-"The aörta measured a foot diameter. Ten or fifteen gallons of blood are thrown out of the heart at a stroke, with an immense velocity, through a tube of a foot diameter. The whole idea fills the mind with wonder."*

The account which we have here stated, of the injection of blood into the arteries by the contraction, and of the corresponding reception of it from the veins by the dilatation, of the cavities of the heart, and of the circulation being thereby maintained through the blood-vessels of the body, is true, but imperfect. The heart performs this office, but it is in conjunction with another of equal curiosity and importance. It was necessary that the blood should be successively brought into contact, or contiguity, or proximity, with the air. I do not know that the chymical reason, upon which this necessity is founded, has been yet sufficiently explored. It seems to be made appear, that the atmosphere which we breathe is a mixture of two kinds of air; one pure and vital, the other, for the purposes of life, effete, foul, and noxious: that when we have drawn in our breath, the blood in the lungs imbibes from the air, thus brought into contiguity with it, a portion of its pure ingredient, and, at the same time, gives out the effete or corrupt air which it contained, and which is carried away, along with the halitus, every time we expire. At least; by comparing the air which is breathed from the lungs, with the air which enters the lungs, it is found to have lost some of its pure part, and to have brought away with it an addition of its impure part. Whether these experiments satisfy the question, as to the need which the blood stands in of being visited by continual accesses of air, is not for us to inquire into, nor material to our argument: it is sufficient to know, that, in the constitution of most animals, such a necessity exists, and that the air, by some means or other, must be introduced into a near communication with the blood. The lungs of animals are constructed for this purpose. They consist

Dr. Hunter's Account of the Dissection of a Whale. Phil. Trans.

of blood-vessels and air-vessels, lying close to each other; and whenever there is a branch of the trachea or windpipe, there is a branch accompanying it of the vein and artery, and the air-vessel is always in the middle between the blood-vessels.* The internal surface of these vessels, upon which the application of the air to the blood depends, would, if collected and expanded, be, in a man, equal to a superficies of fifteen feet square. Now, in order to give the blood in its course the benefit of this organization (and this is the part of the subject with which we are chiefly concerned), the following operation takes place. As soon as the blood is received by the heart from the veins of the body, and before that is sent out again into its arteries, it is carried, by the force of the contraction of the heart, and by means of a separate and supplementary artery, to the lungs, and made to enter the vessels of the lungs; from which, after it has undergone the action, whatever it be, of that viscus, it is brought back by a large vein once more to the heart, in order, when thus concocted and prepared, to be thence distributed anew into the system. This assigns to the heart a double office. The pulmonary circulation is a system within a system; and one action of the heart is the origin of both.

For this complicated function, four cavities become necessary; and four are accordingly provided: two, called ventricles, which send out the blood, viz. one into the lungs, in the first instance; the other into the mass, after it has returned from the lungs: two others also, called auricles, which receive the blood from the veins; viz. one, as it comes immediately from the body; the other, as the same blood comes a second time after its circulation through the lungs. So that there are two receiving cavities, and two forcing cavities. The structure of the heart has reference to the lungs; for without the lungs, one of each would have been sufficient. The translation of the blood in the heart itself is after this manner. The receiving cavities respectively communicate with the forcing cavities, and, by their contraction, unload the received blood into them. The forcing cavities, when it is their turn to contract, compel the same blood into the mouths of the arteries.

The account here given will not convey to a reader, ignorant of anatomy, any thing like an accurate notion of the form, action, or use of the parts (nor can any short and popular account do this); but it is abundantly sufficient to testify contrivance; and although * Keill's Anatomy, p. 121.

imperfect, being true as far as it goes, may be relied upon for the only purpose for which we offer it, the purpose of this conclusion.

"The wisdom of the Creator," saith Hamburgher, "is in nothing seen more gloriously than in the heart." And how well doth it execute its office! An anatomist, who understood the structure of the heart, might say beforehand that it would play; but he would expect, I think, from the complexity of its mechanism, and the delicacy of many of its parts, that it should always be liable to derangement, or that it would soon work itself out. Yet shall this wonderful machine go, night and day, for eighty years together, at the rate of a hundred thousand strokes every twenty-four hours, having, at every stroke, a great resistance to overcome; and shall continue this action for this length of time, without disorder and without weariness! But farther: From the account which has been given of the mechanism of the heart, it is evident that it must require the interposition of valves; that the success indeed of its action must depend upon these; for when any one of its cavities contracts, the necessary tendency of the force will be to drive the enclosed blood, not only into the mouth of the artery where it ought to go, but also back again into the mouth of the vein from which it flowed. In like manner, when by the relaxation of the fibres the same cavity is dilated, the blood would not only run into it from the vein, which was the course intended, but back from the artery, through which it ought to be moving forward. The way of preventing a reflux of the fluid, in both these cases, is to fix valves, which, like flood-gates, may open a way to the stream in one direction, and shut up the passage against it in another. The heart, constituted as it is, can no more work without valves, than a pump can. When the piston descends in a pump, if it were not for the stoppage by the valve beneath, the motion would only thrust down the water which it had before drawn up. A similar consequence would frustrate the action of the heart. Valves, therefore, properly disposed, i. e. properly with respect to the course of the blood which it is necessary to promote, are essential to the contrivance. And valves so disposed, are accordingly provided. A valve is placed in the communication between each auricle and its ventricle, lest, when the ventricle contracts, part of the blood should get back again into the auricle, instead of the whole entering, as it ought to do, the mouth of the artery. A valve is also fixed at the mouth of

each of the great arteries which take the blood from the heart; leaving the passage free, so long as the blood holds its proper course forward; closing it, whenever the blood, in consequence of the relaxation of the ventricle, would attempt to flow back. There is some variety in the construction of these valves, though all the valves of the body act nearly upon the same principle, and are destined to the same use. In general they consist of a thin membrane, lying close to the side of the vessel, and consequently allowing an open passage whilst the stream runs one way, but thrust out from the side by the fluid getting behind it, and opposing the passage of the blood, when it would flow the other way. Where more than one membrane is employed, the different membranes only compose one valve. Their joint action fulfils the office of a valve: For instance; over the entrance of the right auricle of the heart into the right ventricle, three of these skins or membranes are fixed, of a triangular figure, the bases of the triangles fastened to the flesh; the sides and summits loose; but, though loose, connected by threads of a determinate length, with certain small fleshy prominences adjoining. The effect of this construction is, that when the ventricle contracts, the blood endeavouring to escape in all directions, and amongst other directions pressing upwards, gets between these membranes and the sides of the passage; and thereby forces them up into such a position, as that, together, they constitute, when raised, a hollow cone (the strings, before spoken of, hindering them from proceeding or separating farther); which cone, entirely occupying the passage, prevents the return of the blood into the auricle. A shorter account of the matter may be this: So long as the blood proceeds in its proper course, the membranes which compose the valve are pressed close to the side of the vessel, and occasion no impediment to the circulation: when the blood would regurgitate, they are raised from the side of the vessel, and, meeting in the middle of its cavity, shut up the channel. Can any one doubt of contrivance here; or is it possible to shut our eyes against the proof of it?

This valve, also, is not more curious in its structure, than it is important in its office. Upon the play of the valve, even upon the proportioned length of the strings or fibres which check the ascent of the membranes, depends, as it should seem, nothing less than the life itself of the animal. We may here likewise repeat, what we before observed

concerning some of the ligaments of the body, that they could not be formed by any action of the parts themselves. There are cases in which, although good uses appear to arise from the shape or configuration of a part, yet that shape or configuration itself may seem to be produced by the action of the part, or by the action or pressure of adjoining parts. Thus the bend and the internal smooth concavity of the ribs, may be attributed to the equal pressure of the soft bowels; the particular shape of some bones and joints, to the traction of the annexed muscles, or to the position of contiguous mucles. But valves could not be so formed. Action and pressure are all against them. The blood, in its proper course, has no tendency to produce such things; and in its improper or reflected current, has a tendency to prevent their production. Whilst we see, therefore, the use and necessity of this machinery, we can look to no other account of its origin or formation than the intending mind of a Creator. Nor can we without admiration reflect, that such thin membranes, such weak and tender instruments as these valves are, should be able to hold out for seventy or eighty years.

Here also we cannot consider but with gratitude, how happy it is that our vital motions are involuntary. We should have enough to do, if we had to keep our hearts beating, and our stomachs at work. Did these things depend, we will not say upon our effort, but upon our bidding, our care, or our attention, they would leave us leisure for nothing else. We must have been continually upon the watch, and continually in fear; nor would this constitution have allowed of sleep.

It might perhaps be expected, that an organ so precious, of such central and primary importance as the heart is, should be defended by a case. The fact is, that a membranous purse or bag, made of strong, tough materials, is provided for it; holding the heart within its cavity; sitting loosely and easily about it; guarding its substance, without confining its motion; and containing likewise a spoonful or two of water, just sufficient to keep the surface of the heart in a state of suppleness and moisture. How should such a loose covering be generated by the action of the heart? Does not the enclosing of it in a sack, answering no other purpose but that enclosure, show the care that has been taken of its preservation?

One use of the circulation of the blood probably (amongst other uses) is, to distri

bute nourishment to the different parts of the body. How minute and multiplied the ramifications of the blood-vessels, for that purpose, are; and how thickly spread, over at least the superficies of the body, is proved by the single observation, that we cannot prick the point of a pin into the flesh, without drawing blood, i. e. without finding a bloodvessel. Nor, internally, is their diffusion less universal. Blood-vessels run along the surface of membranes, pervade the substance of muscles, penetrate the bones. Even into every tooth, we trace, through a small hole in the root, an artery to feed the bone, as well as a vein to bring back the spare blood from it; both which, with the addition of an accompanying nerve, form a thread only a little thicker than a horse-hair.

Wherefore, when the nourishment taken in at the mouth has once reached and mixed itself with the blood, every part of the body is in the way of being supplied with it. And this introduces another grand topic, namely, the manner in which the aliment gets into the blood; which is a subject distinct from the preceding, and brings us to the consideration of another entire system of vessels.

II. For this necessary part of the animal economy, an apparatus is provided, in a great measure capable of being what anatomists call demonstrated, that is, shown in the dead body;—and a line or course of conveyance, which we can pursue by our examinations.

First, the food descends by a wide passage into the intestines, undergoing two great preparations on its way: one, in the mouth by mastication and moisture,-(can it be doubted with what design the teeth were placed in the road to the stomach, or that there was choice in fixing them in this situation?) the other, by digestion in the stomach itself. Of this last surprising dissolution I say nothing; because it is chymistry, and I am endeavouring to display mechanism. The figure and position of the stomach (I speak all along with a reference to the human organ) are calculated for detaining the food long enough for the action of its digestive juice. It has the shape of the pouch of a bagpipe; lies across the body; and the pylorus, or passage by which the food leaves it, is somewhat higher in the body than the cardia, or orifice by which it enters; so that it is by the contraction of the muscular coat of the stomach, that the contents, after having undergone the application of the gastric menstruum, are gradually pressed out. In dogs and cats, this action of the

coats of the stomach has been displayed to the eye. It is a slow and gentle undulation, propagated from one orifice of the stomach to the other. For the same reason that I omitted, for the present, offering any observation upon the digestive fluid, I shall say nothing concerning the bile or the pancreatic juice, farther than to observe upon the mechanism, viz. that from the glands in which these secretions are elaborated, pipes are laid into the first of the intestines, through which pipes the product of each gland flows into that bowel, and is there mixed with the aliment, as soon almost as it passes the stomach; adding also as a remark, how grievously this same bile offends the stomach itself, yet cherishes the vessel that lies next

to it.

Secondly, We have now the aliment in the intestines converted into pulp; and, though lately consisting of ten different viands, reduced to nearly a uniform substance, and to a state fitted for yielding its essence, which is called chyle, but which is milk, or more nearly resembling milk than any other liquor with which it can be compared. For the straining off this fluid from the digested aliment in the course of its long progress through the body, myriads of capillary tubes, i. e. pipes as small as hairs, open their orifices into the cavity of every part of the intestines. These tubes, which are so fine and slender as not to be visible unless when distended with chyle, soon unite into larger branches. The pipes, formed by this union, terminate in glands, from which other pipes of a still larger diameter arising, carry the chyle from all parts, into a common reservoir or receptacle. This receptacle is a bag of size enough to hold about two table-spoons full; and from this vessel a duct or main pipe proceeds, climbing up the back part of the chest, and afterwards creeping along the gullet till it reach the neck. Here it meets the river: here it discharges itself into a large vein, which soon conveys the chyle, now flowing along with the old blood, to the heart. This whole route can be exhibited to the eye; nothing is left to be supplied by imagination or conjecture. Now, beside the subserviency of this structure, collectively considered, to a manifest and necessary purpose, we may remark two or three separate particulars in it, which show, not only the contrivance, but the perfection of it. We may remark, first, the length of the intestines, which, in the human subject, is six times that of the body. Simply for a passage, these voluminous bowels, this prolixitv of gut, seems in no

wise necessary; but in order to allow time and space for the successive extraction of the chyle from the digested aliment, namely, that the chyle which escapes the lacteals of one part of the guts may be taken up by those of some other part, the length of the canal is of evident use and conduciveness. Secondly, we must also remark their peristaltic motion; which is made up of contractions, following one another like waves upon the surface of a fluid, and not unlike what we observe in the body of an earth-worm crawling along the ground; and which is effected by the joint action of longitudinal and of spiral, or rather perhaps of a great number of separate semi-circular fibres. This curious action pushes forward the grosser part of the aliment, at the same time that the more subtile parts, which we call chyle, are, by a series of gentle compressions, squeezed into the narrow orifices of the lacteal veins. Thirdly, it was necessary that these tubes, which we denominate lacteals, or their mouths at least, should be made as narrow as possible, in order to deny admission into the blood to any particle which is of size enough to make a lodgment afterwards in the small arteries, and thereby to obstruct the circulation: And it was also necessary that this extreme tenuity should be compensated by multitude; for a large quantity of chyle (in ordinary constitutions, not less, it has been computed, than two or three quarts in a day) is, by some means or other, to be passed through them. Accordingly, we find the number of the lacteals exceeding all powers of computation; and their pipes so fine and slender, as not to be visible, unless filled, to the naked eye; and their orifices, which open into the intestines, so small, as not to be discernible even by the best microscope. Fourthly, the main pipe which carries the chyle from the reservoir to the blood, viz. the thoracic duct, being fixed in an almost upright position, and wanting that advantage of propulsion which the arteries possess, is furnished with a succession of valves to check the ascending fluid, when once it has passed them, from falling back. These valves look upward, so as to leave the ascent free, but to prevent the return of the chyle, if, for want of sufficient force to push it on, its weight should at any time cause it to descend, Fifthly, the chyle enters the blood in an odd place, but perhaps the most commodious place possible, viz. at a large vein in the neck, so situated with respect to the circulation, as speedily to bring the mixture to the

heart. And this seems to be a circumstance of great moment; for had the chyle entered the blood at an artery, or at a distant vein, the fluid, composed of the old and the new materials, must have performed a considerable part of the circulation, before it received that churning in the lungs, which is, probably, necessary for the intimate and perfect union of the old blood with the recent chyle. Who could have dreamt of a communication between the cavity of the intestines and the left great vein of the neck? Who could have suspected that this communication should be the medium through which all nourishment is derived to the body; or this the place, where, by a side-inlet, the important junction is formed between the blood and the material which feeds it?

We postponed the consideration of digestion, lest it should interrupt us in tracing the course of the food to the blood; but in treating of the alimentary system, so principal a part of the process cannot be omitted.

Of the gastric juice, the immediate agent by which that change which food undergoes in our stomachs is effected, we shall take our account from the numerous, careful, and varied experiments of the Abbé Spallanzani.

1. It is not a simple diluent, but a real solvent. A quarter of an ounce of beef had scarcely touched the stomach of a crow, when the solution began.

2. It has not the nature of saliva; it has not the nature of the bile; but is distinct from both. By experiments out of the body it appears, that neither of these secretions acts upon alimentary substances, in the same manner as the gastric juice acts.

3. Digestion is not putrefaction; for the digesting fluid resists putrefaction most pertinaciously; nay, not only checks its farther progress, but restores putrid substances.

4. It is not a fermentative process: for the solution begins at the surface, and proceeds towards the centre, contrary to the order in which fermentation acts and spreads. 5. It is not the digestion of heat: for the cold maw of a cod or sturgeon will dissolve the shells of crabs or lobsters, harder than the sides of the stomach which contains them.

In a word, animal digestion carries about it the marks of being a power and a process completely sui generis; distinct from every other; at least from every chymical process with which we are acquainted. And the most wonderful thing about it is its appropriation; its subserviency to the particular economy of each animal. The gastric juice

of an owl, falcon, or kite, will not touch grain; no, not even to finish the macerated and half-digested puise which is left in the crops of the sparrows that the bird devours. In poultry, the trituration of the gizzard, and the gastric juice, conspire in the work of digestion. The gastric juice will not dissolve the grain whilst it is whole. Entire grains of barley, enclosed in tubes or spherules, are not affected by it. But if the same grain be by any means broken or ground, the gastric juice immediately lays hold of it. Here then is wanted, and here we find, a combination of mechanism and chymistry. For the preparatory grinding, the gizzard lends its mill. And as all mill-work should be strong, its structure is so, beyond that of any other muscle belonging to the animal. The internal coat also, or lining of the gizzard, is, for the same purpose, hard and cartilaginous. But, forasmuch as this is not the sort of animal substance suited for the reception of glands or for secretion, the gastric juice, in this family, is not supplied, as in membranous stomachs, by the stomach itself, but by the gullet, in which the feeding glands are placed, and from which it trickles down into the stomach.

In sheep, the gastric fluid has no effect in digesting plants, unless they have been previously masticated. It only produces a slight maceration; nearly such as common water would produce, in a degree of heat somewhat exceeding the medium temperature of the atmosphere. But provided that the plant has been reduced to pieces by chewing, the gastric juice then proceeds with it, first by softening its substance; next by destroying its natural consistency; and lastly, by dissolving it so completely, as not even to spare the toughest and most stringy parts, such as the nerves of the leaves.

So far our accurate and indefatigable Abbé.-Dr. Stevens, of Edinburgh, in 1777, found, by experiments tried with perforated balls, that the gastric juice of the sheep and the ox speedily dissolved vegetables, but made no impression upon beef, mutton, and other animal bodies. Dr. Hunter discovered a property of this fluid, of a most curious kind; viz. that in the stomachs of animals which feed upon flesh, irresistibly as this fluid acts upon animal substances, it is only upon the dead substance that it operates at all. The living fibre suffers no injury from lying in contact with it. Worms and insects are found alive in the stomachs of such animals. The coats of the human stomach, in a healthy state, are insensible to its pre

« VorigeDoorgaan »